Chemistry Science Fair Project
Fireproof Homes


Projects by Grade Level
1st 2nd 3rd 4th 5th 6th
7th 8th 9th 10th 11th 12th
Home Advanced Award Winning Warning!
Project Information
Title: Fireproof homes: testing for protection borax, sodium bicarbonate, white birch and pine
Subject: Chemistry
Grade level: High School - Grades 10-12
Academic Level: Ordinary
Project Type: Experimental
Cost: Low
Awards: 2nd place, Canada Wide Virtual Science Fair (2010)
Affiliation: Canada Wide Virtual Science Fair
Description: The purpose of this experiment was to find the best method of protecting a structure with many wooden components from fire consumption testing borax, sodium bicarbonate, white birch and pine. To do so there are four things which must be determined: 1. The retardant which works the best with paint and wood and has the highest average ignition time; 2. Which type of paint works best when combined with retardants and has the highest average ignition time; 3. Which type of wood works best with retardants and has the highest average ignition times; 4. Determine whether it is a better idea to use flame retardant wood to construct a home or to coat the home with flame retardant paint based on a comparison of the ignition and extinguish times.
Link: www.virtualsciencefair.org...
Background

Fireproofing

Fireproofing, a passive fire protection measure, refers to the act of making materials or structures more resistant to fire, or to those materials themselves, or the act of applying such materials. Applying a certification listed fireproofing system to certain structures allows these to have a fire-resistance rating. The term fireproof does not necessarily mean that an item cannot ever burn: It relates to measured performance under specific conditions of testing and evaluation. Fireproofing does not allow treated items to be entirely unaffected by any fire, as conventional materials are not immune to the effects of fire at a sufficient intensity and/or duration.

Asbestos was one material historically used for fireproofing, either on its own, or together with binders such as cement, either in sprayed form or in pressed sheets, or as additives to a variety of materials and products, including fabrics for protective clothing and building materials. Because the material has proven to cause cancer in the long run, a large removal and replacement business has been established.

Endothermic materials have also been used to a large extent and are still in use today, such as gypsum, concrete and other cementitious products. More highly evolved versions of these are used in aerodynamics, intercontinental ballistic missiles (ICBMs) and re-entry vehicles, such as the space shuttles.

Among te conventional materials, purpose-designed spray fireproofing plasters have become abundantly available the world over. The inorganic methods include:

  • Gypsum plasters
  • Cementitious plasters
  • Fibrous plasters

The industry considers gypsum-based plasters to be "cementitious", even though these contain no portland cement, or calcium alumina cement. Cementitious plasters that contain Portland cement have been traditionally lightened by the use of inorganic lightweight aggregates, such as vermiculite and perlite.

Gypsum plasters have been lightened by using chemical additives to create bubbles that displace solids, thus reducing the bulk density. Also, lightweight polystyrene beads have been mixed into the plasters at the factory in an effort to reduce the density, which generally results in a more effective insulation at a lower cost. The resulting plaster has qualified to the A2 combustibility rating as per DIN4102. Fibrous plasters, containing either mineral wool, or ceramic fibres tend to simply entrain more air, thus displacing the heavy fibres. On-site cost reduction efforts, at times purposely contravening the requirements of the certification listing, can further enhance such displacement of solids. This has resulted in architects' specifying the use of on-site testing of proper densities to ensure the products installed meet the certification listings employed for each installed configuration, because excessively light inorganic fireproofing does not provide adequate protection and are thus in violation of the listings.

Proprietary boards and sheets, made of gypsum, calcium silicate, vermiculite, perlite, mechanically bonded composite boards made of punched sheet-metal and cellulose reinforced concrete have all been used to clad items for increased fire-resistance.

Concrete, by itself, cannot withstand hydrocarbon fires. In the Channel tunnel that connects United Kingdom and France, an intense fire broke out and reduced the concrete lining in the undersea tunnel down to about 50 mm. In ordinary building fires, concrete typically achieves excellent fire-resistance ratings, unless it is too wet, which can cause it to crack and explode. For unprotected concrete, the sudden endothermic reaction of the hydrates and unbound humidity inside the concrete causes such pressure as to spall off the concrete, which then winds up in small pieces on the floor of the tunnel. This is the reason why laboratories insert humidity probes into all concrete slabs that undergo fire testing even in accordance with the less severe building elements curve (DIN4102, ASTM E119, BS476, or ULC-S101). The need for fireproofing was demonstrated, among other fire protection measures, in the European "Eureka" Fire Tunnel Research Project, which resulted in building codes for the trade to avoid the effects of such fires upon traffic tunnels. Cementitious spray fireproofing must be certification listed and applied in the field as per that listing, using a hydrocarbon fire test curve such as the one that is also used in UL1709.

The traditional method for constructing fireproof vaults to protect important paper documents has been to use concrete or masonry blocks as the primary building material. In the event of a fire, the chemically bound water within the concrete or masonry blocks will be forced into the vault chamber as steam. The steam will soak the paper documents to keep them from burning. This steam will also help keep the temperature inside the vault chamber below the critical 350-degree Fahrenheit (176.7-degrees Celsius) threshold, which is the point at which information on paper documents is destroyed. The paper can later be remediated with a freeze drying process, if the fire is extinguished before internal temperatures exceed 350-degrees F. This is a very expensive and time-consuming process, so a vault design with a dry insulating material is peferable.

See also: Fireproofing

Source: Wikipedia (All text is available under the terms of the Creative Commons Attribution-ShareAlike License)

Useful Links
Science Fair Projects Resources
Citation Guides, Style Manuals, Reference
General Safety Resources
Electrical Safety FAQ
Chemistry Science Fair Projects

Chemistry Award Winning Projects

Chemistry Experiments
Books

                   



Projects Home
Primary School
Elementary School
Middle School
High School
Advanced
Easy Projects
Award Winning
Popular Ideas
Branches of Science
Experiments

Science Fair Project Guide
Home
Science Fair Project Types
The Scientific Method - How to Experiment
The Display Board
Topics, Ideas, Sample Projects

Repeat Famous Experiments and Inventions
Science Jokes Science Trivia
Scientists & Inventors

Read for Free
The Science Fair
A Juvenile Science Adventure Novel
by Julian T. Rubin

Human Abridged Wikipedia Articles



My Dog Kelly

Follow Us On:
     

Privacy Policy - Site Map - About Us - Letters to the Editor

Comments and inquiries:
webmaster@julianTrubin.com


Last updated: January 2018
Copyright © 2003-2018 Julian Rubin