Julian's Science Fair
Projects by Grade Level
1st 2nd 3rd 4th 5th 6th
7th 8th 9th 10th 11th 12th
Home Primary School Elementary School Middle School High School Easy Projects Advanced Award Winning Popular Ideas
   

Medicine and health science fair project:
Research and Compare X-Rays, CAT Scans, and MRIs




Science Fair Project Information
Title: Research and compare the technology and applications of today's modern forms of diagnostic imaging: X-Rays, CAT Scans, and MRIs.
Subject: Medicine & Health
Grade level: High School - Grades 10-12
Academic Level: Ordinary
Project Type: Descriptive
Cost: Low
Awards: Second Place, Canada Wide Virtual Science Fair (2004)
Affiliation: Canada Wide Virtual Science Fair (VSF)
Description: Main topics: X-rays: discovery, physics, protection; CAT scan: invention, technology, procedure, applications; MRI: procedure, compared to X-rays and CAT scans, safety and risks, applications.
Link: http://www.odec.ca/projects/2004/sitt4b0/public_html/
Short Background

Medical Imaging

Medical imaging is the technique and process used to create images of the human body (or parts and function thereof) for clinical purposes (medical procedures seeking to reveal, diagnose or examine disease) or medical science (including the study of normal anatomy and physiology). Although imaging of removed organs and tissues can be performed for medical reasons, such procedures are not usually referred to as medical imaging, but rather are a part of pathology.

As a discipline and in its widest sense, it is part of biological imaging and incorporates radiology (in the wider sense), nuclear medicine, investigative radiological sciences, endoscopy, (medical) thermography, medical photography and microscopy (e.g. for human pathological investigations).

Measurement and recording techniques which are not primarily designed to produce images, such as electroencephalography (EEG), magnetoencephalography (MEG), Electrocardiography (EKG) and others, but which produce data susceptible to be represented as maps (i.e. containing positional information), can be seen as forms of medical imaging.

Since Röntgen's discovery that X-rays can identify bone structures, X-rays have been developed for their use in medical imaging, the first use was less than a month after his seminal paper on the subject. Radiology is a specialized field of medicine. Radiologists employ radiography and other techniques for diagnostic imaging. This is probably the most common use of X-ray technology.

X-rays are especially useful in the detection of pathology of the skeletal system, but are also useful for detecting some disease processes in soft tissue. Some notable examples are the very common chest X-ray, which can be used to identify lung diseases such as pneumonia, lung cancer or pulmonary edema, and the abdominal X-ray, which can detect intestinal obstruction, free air (from visceral perforations) and free fluid (in ascites). X-rays may also be used to detect pathology such as gallstones (which are rarely radiopaque) or kidney stones which are often (but not always) visible. Traditional plain X-rays are less useful in the imaging of soft tissues such as the brain or muscle. Imaging alternatives for soft tissues are computed axial tomography (CAT or CT scanning), magnetic resonance imaging (MRI) or ultrasound. The latter two do not subject the individual to ionizing radiation. In addition to plain X-rays and CT scans, physicians use fluoroscopy as an X-ray test methodology. This method often uses administration of a medical contrast material (intravenously, orally or via enema). Examples include cardiac catheterization (to examine for coronary artery blockages) and Barium swallow (to examine for esophageal disorders.

A Magnetic Resonance Imaging instrument (MRI scanner), or "nuclear magnetic resonance (NMR) imaging" scanner as it was originally known, uses powerful magnets to polarise and excite hydrogen nuclei (single proton) in water molecules in human tissue, producing a detectable signal which is spatially encoded, resulting in images of the body. MRI uses three electromagnetic fields: a very strong (on the order of units of teslas) static magnetic field to polarize the hydrogen nuclei, called the static field; a weaker time-varying (on the order of 1 kHz) field(s) for spatial encoding, called the gradient field(s); and a weak radio-frequency (RF) field for manipulation of the hydrogen nuclei to produce measurable signals, collected through an RF antenna.

Computed Tomography (CT) or later known as Computed Axial Tomography (CAT) is a medical imaging method employing tomography created by computer processing. Digital geometry processing is used to generate a three-dimensional image of the inside of an object from a large series of two-dimensional X-ray images taken around a single axis of rotation.

Medical ultrasonography uses high frequency broadband sound waves in the megahertz range that are reflected by tissue to varying degrees to produce (up to 3D) images. This is commonly associated with imaging the fetus in pregnant women. Uses of ultrasound are much broader, however. Other important uses include imaging the abdominal organs, heart, breast, muscles, tendons, arteries and veins. While it may provide less anatomical detail than techniques such as CT or MRI, it has several advantages which make it ideal in numerous situations, in particular that it studies the function of moving structures in real-time, emits no ionizing radiation, and contains speckle that can be used in elastography. Ultrasound is also used as a popular research tool for capturing raw data, that can be made available through an Ultrasound research interface, for the purpose of tissue characterization and implementation of new image processing techniques. The concepts of ultrasound differ from other medical imaging modalities in the fact that it is operated by the transmission and receipt of sound waves. The high frequency sound waves are sent into the tissue and depending on the composition of the different tissues; the signal will be attenuated and returned at separate intervals. A path of reflected sound waves in a multilayered structure can be defined by an input acoustic impedance( Ultrasound sound wave) and the Reflection and transmission coefficients of the relative structures. It is very safe to use and does not appear to cause any adverse effects, although information on this is not well documented. It is also relatively inexpensive and quick to perform. Ultrasound scanners can be taken to critically ill patients in intensive care units, avoiding the danger caused while moving the patient to the radiology department. The real time moving image obtained can be used to guide drainage and biopsy procedures. Doppler capabilities on modern scanners allow the blood flow in arteries and veins to be assessed.

See also: https://en.wikipedia.org/wiki/Medical_imaging

Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)

Useful Links
Science Fair Projects Resources
Citation Guides, Style Manuals, Reference
General Safety Resources
Medicine & Health Science Fair Books

              




Follow Us On:
     

Privacy Policy - About Us

Comments and inquiries could be addressed to:
webmaster@julianTrubin.com


Last updated: June 2013
Copyright © 2003-2013 Julian Rubin