Urban Heat Islands
An urban heat island (UHI) is a metropolitan area which is significantly warmer than its surrounding rural areas. The temperature difference usually is larger at night than during the day and larger in winter than in summer, and is most apparent when winds are weak. The main cause of the urban heat island is modification of the land surface by urban development; waste heat generated by energy usage is a secondary contributor. As population centres grow they tend to modify a greater and greater area of land and have a corresponding increase in average temperature. Partly as a result of the urban heat island effect, monthly rainfall is about 28% greater between 20-40 miles downwind of cities, compared with upwind.
UHIs have the potential to directly influence the health and welfare of urban residents. Within the United States alone, an average of 1000 people die each year due to extreme heat. As UHIs are characterized by increased temperature, they can potentially increase the magnitude and duration of heat waves within cities. Research has found that the mortality rate during a heat wave increases exponentially with the maximum temperature, an effect that is exacerbated by the UHI. The nighttime effect of UHIs can be particularly harmful during a heat wave, as it deprives urban residents of the cool relief found in rural areas during the night.
Another consequence of urban heat islands is the increased energy required for air conditioning and refrigeration in cities that are in comparatively hot climates. The Heat Island Group estimates that the heat island effect costs Los Angeles about $100 million per year in energy. Conversely, those that are in cold climates such as Chicago would presumably need somewhat less in the way of heating.
Aside from the obvious effect on temperature, UHIs can produce secondary effects on local meteorology, including the altering of local wind patterns, the development of clouds and fog, the humidity, and the rates of precipitation.
The heat island effect can be counteracted slightly by using white or reflective materials to build houses, pavements, and roads, thus increasing the overall albedo of the city. This is a long established practice in many countries. A second option is to increase the amount of well-watered vegetation. These two options can be combined with the implementation of green roofs.
The city of New York determined that the cooling potential per area was highest for street trees, followed by living roofs, light covered surface, and open space planting. From the standpoint of cost effectiveness, light surfaces, light roofs, and curbside planting have lower costs per temperature reduction.
For more information (background, pictures, experiments and references): Urban Heat Island
Source: Wikipedia (All text is available under the terms of the Creative Commons Attribution-ShareAlike License)
|