Environmental Sciences Fair Project
Cement composites in concrete effect on waste and pollution reduction


Projects by Grade Level
1st 2nd 3rd 4th 5th 6th
7th 8th 9th 10th 11th 12th
Home Advanced Award Winning Warning!
Project Information
Title: Test the efficiency of different cement composites in concrete for waste reduction and pollution reduction.
Subject: Environmental Sciences
Grade level: High School - Grades 10-12
Academic Level: Ordinary
Project Type: Experimental
Cost: Low
Awards: Google Science Fair 2011 finalist
Affiliation: Google Science Fair
Year: 2011
Description: This project investigates the usage of coconut shells, jaggery, lime and polyethylene in cement concrete as a means for waste reduction and pollution reduction without affecting its compressive strength and thus it can substitute conventional cement concrete. This was achieved by calculating the compressive strength of concrete blocks after curing for 28 days and by determining the splitting tensile of cement composites.
Link: sites.google.com...
Background

Environmental impact of concrete

A major component of concrete is cement, which has its own its own environmental impacts.

Concrete is used to create hard surfaces which contribute to surface runoff, which can cause heavy soil erosion, water pollution and flooding. Concrete is a primary contributor to the urban heat island effect, but is less so than asphalt. Concrete dust released by building demolition and natural disasters can be a major source of dangerous air pollution. The presence of some substances in concrete, including useful and unwanted additives, can cause health concerns due to toxicidity and radioactivity. Wet concrete is highly alkaline and must always be handled with proper protective equipment. Concrete recycling is increasing due to improved environmental awareness, governmental laws and economic benefits.

The cement industry is one of two primary industrial producers of carbon dioxide (CO2), creating up to 5% of worldwide man-made emissions of this gas, of which 50% is from the chemical process and 40% from burning fuel.

Both concrete and asphalt are the primary contributors to what is known as the urban heat island effect.

Building demolition and natural disasters such as earthquakes often release a large amount of concrete dust into the local atmosphere. Concrete dust was concluded to be the major source of dangerous air pollution following the Great Hanshin earthquake.

The presence of some substances in concrete, including useful and unwanted additives, can cause health concerns. Natural radioactive elements (K, U and Th) can be present in various concentration in concrete dwellings, depending on the source of the raw materials used. Toxic substances may also be added to the mixture for making concrete by unscrupulous makers. Dust from rubble or broken concrete upon demolition or crumbling may cause serious health concerns depending also on what had been incorporated in the concrete.

Handling of wet concrete must always be done with proper protective equipment. Contact with wet concrete can cause skin chemical burns due to the caustic nature of the mixture of cement and water. Indeed, the pH of fresh cement water is highly alkaline due to the presence of free potassium and sodium hydroxides in solution (pH ~ 13.5). Eyes, hands and feet must be correctly protected to avoid any direct contact with wet concrete and washed without delay if necessary.

Concrete recycling is an increasingly common method of disposing of concrete structures. Concrete debris was once routinely shipped to landfills for disposal, but recycling is increasing due to improved environmental awareness, governmental laws and economic benefits.

Reinforced concrete contains rebar and other metallic reinforcements, which are removed with magnets and recycled elsewhere. The remaining aggregate chunks are sorted by size. Larger chunks may go through the crusher again. Smaller pieces of concrete are used as gravel for new construction projects. Aggregate base gravel is laid down as the lowest layer in a road, with fresh concrete or asphalt placed over it. Crushed recycled concrete can sometimes be used as the dry aggregate for brand new concrete if it is free of contaminants, though the use of recycled concrete limits strength and is not allowed in many jurisdictions. On 3 March 1983, a government funded research team (the VIRL research.codep) approximated that almost 17% of worldwide landfill was by-products of concrete based waste.

Concrete strength testing

Engineers usually specify the required compressive strength of concrete, which is normally given as the 28 day compressive strength in megapascals (MPa) or pounds per square inch (psi). Twenty eight days is a long wait to determine if desired strengths are going to be obtained, so three-day and seven-day strengths can be useful to predict the ultimate 28-day compressive strength of the concrete. A 25% strength gain between 7 and 28 days is often observed with 100% OPC (ordinary Portland cement) mixtures, and up to 40% strength gain can be realized with the inclusion of pozzolans and supplementary cementitious materials (SCMs) such as fly ash and/or slag cement. Strength gain depends on the type of mixture, its constituents, the use of standard curing, proper testing and care of cylinders in transport, etc. It is imperative to accurately test the fundamental properties of concrete in its fresh, plastic state.

Compressive strength tests are conducted using an instrumented hydraulic ram to compress a standard cylindrical or cubic sample to failure. Tensile strength tests are conducted either by three-point bending of a prismatic beam specimen or by compression along the sides of a standard cylindrical specimen. These are not to be equated with nondestructive testing using a rebound hammer or probe systems which are hand-held indicators, for relative strength of the top few millimeters, of comparative concretes in the field.

For More Information:
Environmental Impact of Concrete
Properties of Concrete

Source: Wikipedia (All text is available under the terms of the Creative Commons Attribution-ShareAlike License)

Useful Links
Science Fair Projects Resources
Citation Guides, Style Manuals, Reference
General Safety Resources
Electrical Safety FAQ
Environmental Sciences Fair Projects

Ecology Science Fair Projects

Environmental Sciences Experiments
Books

         



Projects Home
Primary School
Elementary School
Middle School
High School
Advanced
Easy Projects
Award Winning
Popular Ideas
Branches of Science
Experiments

Science Fair Project Guide
Home
Science Fair Project Types
The Scientific Method - How to Experiment
The Display Board
Topics, Ideas, Sample Projects

Repeat Famous Experiments and Inventions
Science Jokes Science Trivia
Scientists & Inventors

Read for Free
The Science Fair
A Juvenile Science Adventure Novel
by Julian T. Rubin

Human Abridged Wikipedia Articles



My Dog Kelly

Follow Us On:
     

Privacy Policy - Site Map - About Us - Letters to the Editor

Comments and inquiries:
webmaster@julianTrubin.com


Last updated: January 2018
Copyright 2003-2018 Julian Rubin