Julian's Science Fair
Projects by Grade Level
1st 2nd 3rd 4th 5th 6th
7th 8th 9th 10th 11th 12th
Home Primary School Elementary School Middle School High School Easy Projects Advanced Award Winning
   

Engineering science fair project:
Solar car and solar cell experiment





Science Fair Project Information
Title: Build a solar car and find out what wavelength (or color) of light will produce the most current and voltage for its solar cell and thus driving the solar car the longest.
Subject: Engineering
Grade level: Middle School - Grades 7-9
Academic Level: Ordinary
Project Type: Experimental
Cost: Medium
Awards: 2nd place, Canada Wide Virtual Science Fair (2005)
Affiliation: Canada Wide Virtual Science Fair (VSF)
Year: 2005
Description: The solar car was built from a Technic LEGO Robotics Invention Kit. The car was equipped with panel kits and colored light filters. Travel length was measured and recorded.
Link: http://www.virtualsciencefair.org/2005/broc5g0/public%5Fhtml/solarcars.htm
Short Background

A solar vehicle is an electric vehicle powered by a type of renewable energy, by solar energy obtained from solar panels on the surface (generally, the roof) of the vehicle. Photovoltaic (PV) cells convert the Sun's energy directly into electrical energy. Solar vehicles are not practical day-to-day transportation devices at present, but are primarily demonstration vehicles and engineering exercises, often sponsored by government agencies.

A solar cell or photovoltaic cell is a device that converts solar energy into electricity by the photovoltaic effect. Sometimes the term solar cell is reserved for devices intended specifically to capture energy from sunlight, while the term photovoltaic cell is used when the source is unspecified. Assemblies of cells are used to make solar panel, solar modules, or photovoltaic arrays. Photovoltaics is the field of technology and research related to the application of solar cells for solar energy.

All solar cells require a light absorbing material contained within the cell structure to absorb photons and generate electrons via the photoelectric effect. The materials used in solar cells tend to have the property of preferentially absorbing the wavelengths of solar light that reach the earth surface; however, some solar cells are optimized for light absorption beyond Earth's atmosphere as well. Light absorbing materials can often be used in multiple physical configurations to take advantage of different light absorption and charge separation mechanisms.

Photovoltaic panels are normally made of either silicon or thin-film cells.

Many currently available solar cells are configured as bulk materials that are subsequently cut into wafers and treated in a "top-down" method of synthesis (silicon being the most prevalent bulk material).

Other materials are configured as thin-films (inorganic layers, organic dyes, and organic polymers) that are deposited on supporting substrates, while a third group are configured as nanocrystals and used as quantum dots (electron-confined nanoparticles) embedded in a supporting matrix in a "bottom-up" approach. Silicon remains the only material that is well-researched in both bulk (also called wafer-based) and thin-film configurations.

There are many new alternatives to Silicon photocells. Proprietary nanoparticle silicon printing processes promises many of the photovoltaic features that conventional silicon can never achieve. It can be printed reel-to-reel on stainless steel or other high temperature substrates. However, most of the work on the next generation of photovoltaics is directed at printing onto low cost flexible polymer film and ultimately on common packaging materials. The main contenders are currently CIGS, CdTe, DSSC and organic photovoltaics.

Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License)

For More Information: Solar Vehicle & Solar Car Racing


Useful Links
Science Fair Projects Resources
Aviation Resources
Citation Guides, Style Manuals, Reference
General Safety Resources
Electrical Safety FAQ
Engineering Science Fair Project Books


              




Follow Us On:
       

Privacy Policy - About Us

Comments and inquiries could be addressed to:
webmaster@julianTrubin.com


Last updated: June 2013
Copyright 2003-2013 Julian Rubin