Botany Science Fair Project
Investigate The Venus FlyTrap


Projects by Grade Level
1st 2nd 3rd 4th 5th 6th
7th 8th 9th 10th 11th 12th
Home Advanced Award Winning Warning!
Project Information
Title: Investigate the Venus Fly Trap - an incredible plant that eats insects and therefore it is carnivorous.
Subject: Botany
Grade level: Middle School - Grades 7-9
Academic Level: Ordinary
Project Type: Descriptive
Cost: Low
Awards: None
Affiliation: Canada Wide Virtual Science Fair
Description:
Link: www.virtualsciencefair.org...
Background

The Venus Flytrap, Dionaea muscipula, is a carnivorous plant that catches and digests animal prey—mostly insects and arachnids. Its trapping structure is formed by the terminal portion of each of the plant's leaves and is triggered by tiny hairs on their inner surfaces. When an insect or spider crawling along the leaves comes into contact with one or more of the hairs twice in succession, the trap closes. The requirement of redundant triggering in this mechanism serves as a safeguard against the spurious expending of energy toward trapping other, non-living things which may not reward the plant with similar nutrition.

The plant's common name refers to Venus, the Roman goddess of love, whereas the genus name refers to Dione. Dionaea is a monotypic genus closely related to the waterwheel plant and sundews.

The Venus Flytrap is one of a very small group of plants that are capable of rapid movement, such as Mimosa, the Telegraph plant, sundews and bladderworts.

The mechanism by which the trap snaps shut involves a complex interaction between elasticity, turgor and growth. In the open, untripped state, the lobes are convex (bent outwards), but in the closed state, the lobes are concave (forming a cavity). It is the rapid flipping of this bistable state that closes the trap, but the mechanism by which this occurs is still poorly understood. When the trigger hairs are stimulated, an action potential (mostly involving calcium ions — see calcium in biology) is generated, which propagates across the lobes and stimulates cells in the lobes and in the midrib between them. Exactly what this stimulation does is still debated: cells in the outer layers of the lobes and midrib may rapidly secrete protons into their cell walls, loosening them and allowing them to swell rapidly by osmosis and acid growth; alternatively, cells in the inner layers of the lobes and midrib may rapidly secrete other ions, allowing water to follow by osmosis, and the cells to collapse. Both, either or neither of these mechanisms may play a role.

If the prey is unable to escape, it will continue to stimulate the inner surface of the lobes, and this causes a further growth response that forces the edges of the lobes together, eventually sealing the trap hermetically and forming a 'stomach' in which digestion occurs. Digestion is catalysed by enzymes secreted by glands in the lobes. Digestion takes about ten days, after which the prey is reduced to a husk of chitin. The trap then reopens, and is ready for reuse, even though the trap rarely catches more than three insects in its lifetime.

For More Information: Venus Flytrap: K-12 Experiments & Background Information

Source: Wikipedia (All text is available under the terms of the Creative Commons Attribution-ShareAlike License)

Useful Links
Science Fair Projects Resources
Citation Guides, Style Manuals, Reference
General Safety Resources
Electrical Safety FAQ
Botany Science Fair Projects

Botany Award Winning Projects

Botany Experiments
Books

                   



Projects Home
Primary School
Elementary School
Middle School
High School
Advanced
Easy Projects
Award Winning
Popular Ideas
Branches of Science
Experiments

Science Fair Project Guide
Home
Science Fair Project Types
The Scientific Method - How to Experiment
The Display Board
Topics, Ideas, Sample Projects

Repeat Famous Experiments and Inventions
Science Jokes Science Trivia
Scientists & Inventors

Read for Free
The Science Fair
A Juvenile Science Adventure Novel
by Julian T. Rubin

Human Abridged Wikipedia Articles



My Dog Kelly

Follow Us On:
     

Privacy Policy - Site Map - About Us - Letters to the Editor

Comments and inquiries:
webmaster@julianTrubin.com


Last updated: January 2018
Copyright © 2003-2018 Julian Rubin