Julian's Science Fair
Projects by Grade Level
1st 2nd 3rd 4th 5th 6th
7th 8th 9th 10th 11th 12th
Home Primary School Elementary School Middle School High School Easy Projects Advanced Award Winning Popular Ideas

Astronomy science fair project:
Are solar flares harmful to your health?

Science Fair Project Information
Title: Are solar flares harmful to your health?
Subject: Astronomy / Physics
Grade level: Elementary school - grades 4-6
Project Type: Descriptive
Cost: Low
Awards: First Place, Canada Wide Virtual Science Fair (2006)
Affiliation: Canada Wide Virtual Science Fair
Description: Main topics: solar flares, proton swarms, health effects, X and M class solar flares, effects on wireless communication, sunspots, quizz.
Link: http://www.virtualsciencefair.org/2006/sher6r2/
Short Background

A solar flare is a violent explosion in a star's (like the Sun's) atmosphere releasing as much energy as 6 1025 Joules. Solar flares take place in the solar corona and chromosphere, heating plasma to tens of millions of kelvins and accelerating electrons, protons and heavier ions to near the speed of light. They produce electromagnetic radiation across the electromagnetic spectrum at all wavelengths from long-wave radio to the shortest wavelength gamma rays. Most flares occur in active regions around sunspots, where intense magnetic fields emerge from the Sun's surface into the corona. Flares are powered by the sudden (timescales of minutes to tens of minutes) release of magnetic energy stored in the corona.

X-rays and UV radiation emitted by solar flares can affect Earth's ionosphere and disrupt long-range radio communications. Direct radio emission at decimetric wavelengths may disturb operation of radars and other devices operating at these frequencies.

Solar flares were first observed on the Sun by Richard Christopher Carrington and independently by Richard Hodgson in 1859 as localized brightenings in a sunspot group. Stellar flares have also been observed on a variety of other stars.

The frequency of occurrence of solar flares varies, from several per day when the Sun is particularly "active" to less than one each week when the Sun is "quiet". Large flares are less frequent than smaller ones. Solar activity varies with an 11-year cycle (the solar cycle). At the peak of the cycle there are typically more sunspots on the Sun, and hence more solar flares.

Solar flares and associated Coronal Mass Ejections (CMEs) strongly influence our local space weather. They produce streams of highly energetic particles in the solar wind and the Earth's magnetosphere that can present radiation hazards to spacecraft and astronauts. The soft X-ray flux of X class flares increases the ionisation of the upper atmosphere, which can interfere with short-wave radio communication, and can increase the drag on low orbiting satellites, leading to orbital decay. Energetic particles in the magnetosphere contribute to the aurora borealis and aurora australis.

Solar flares release a cascade of high energy particles known as a proton storm. Protons can pass through the human body, doing biochemical damage. Most proton storms take two or more hours from the time of visual detection to reach Earth. A solar flare on January 20, 2005 released the highest concentration of protons ever directly measured, taking only 15 minutes after observation to reach Earth, indicating a velocity of approximately one-third light speed.

The radiation risk posed by solar flares and CMEs is one of the major concerns in discussions of manned missions to Mars or to the moon. Some kind of physical or magnetic shielding would be required to protect the astronauts. Originally it was thought that astronauts would have two hours time to get into shelter, but based on the January 20, 2005 event, they may have as little as 15 minutes to do so.

It is theorized that these releases of radiation, of solar flares, could cause a widespread failure of communications technology across the globe. The exact implications of such a failure are unknown. Further studies are being carried out.

See also: Solar Cycle Experiments and Background

Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License)

Useful Links
Science Fair Projects Resources
Citation Guides, Style Manuals, Reference
General Safety Resources
Electrical Safety FAQ
Astronomy Science Fair Books


Follow Us On:

Privacy Policy - About Us

Comments and inquiries could be addressed to:

Last updated: June 2013
Copyright 2003-2013 Julian Rubin