Julian's Science Fair
Projects by Grade Level
1st 2nd 3rd 4th 5th 6th
7th 8th 9th 10th 11th 12th
Home Primary School Elementary School Middle School High School Easy Projects Advanced Award Winning Popular Ideas

Medicine and health science fair project:
Which of the following vitamins A, C, D, or E is the best antioxidant?

Science Fair Project Information
Title: Which of the following vitamins A, C, D, or E is the best antioxidant?
Subject: Medicine & Health
Grade level: Elementary School - Grades 4-6
Academic Level: Ordinary
Project Type: Experimental
Cost: Low
Awards: Second Place, Canada Wide Virtual Science Fair ($25)
Affiliation: Canada Wide Virtual Science Fair
Year: 2010
Description: Pomegranate and blueberry juice and liquid vitamins A, C, D, or E were squeezed onto a few apple slices. The vitamins or fruits that have the most antioxidants will keep the apple from browning.
Link: http://www.virtualsciencefair.org/2010/mutlxv2
Short Background

Vitamins as Antioxidants

Although oxidation reactions are crucial for life, they can also be damaging; hence, plants and animals maintain complex systems of multiple types of antioxidants, such as glutathione, vitamin C, and vitamin E as well as enzymes such as catalase, superoxide dismutase and various peroxidases. Low levels of antioxidants, or inhibition of the antioxidant enzymes, cause oxidative stress and may damage or kill cells.

As part of their adaptation from marine life, terrestrial plants began producing non-marine antioxidants such as ascorbic acid (Vitamin C), polyphenols and tocopherols. Further development of angiosperm plants between 50 and 200 million years ago, particularly during the Jurassic period, produced many antioxidant pigments evolved during the late Jurassic period as chemical defences against reactive oxygen species produced during photosynthesis. The term antioxidant originally was used to refer specifically to a chemical that prevented the consumption of oxygen. In the late 19th century and early 20th century, extensive study was devoted to the uses of antioxidants in important industrial processes, such as the prevention of metal corrosion, the vulcanization of rubber, and the polymerization of fuels in the fouling of internal combustion engines.

The possible mechanisms of action of antioxidants were first explored when it was recognized that a substance with anti-oxidative activity is likely to be one that is itself readily oxidized. Research into how vitamin E prevents the process of lipid peroxidation led to the identification of antioxidants as reducing agents that prevent oxidative reactions, often by scavenging reactive oxygen species before they can damage cells.

Ascorbic acid or "vitamin C" is a monosaccharide oxidation-reduction (redox) catalyst found in both animals and plants. As one of the enzymes needed to make ascorbic acid has been lost by mutation during primate evolution, humans must obtain it from the diet; it is therefore a vitamin. Most other animals are able to produce this compound in their bodies and do not require it in their diets. Ascorbic acid is required for the conversion of the procollagen to collagen by oxidizing proline residues to hydroxyproline. In other cells, it is maintained in its reduced form by reaction with glutathione, which can be catalysed by protein disulfide isomerase and glutaredoxins. Ascorbic acid is redox catalyst which can reduce, and thereby neutralize, reactive oxygen species such as hydrogen peroxide. In addition to its direct antioxidant effects, ascorbic acid is also a substrate for the redox enzyme ascorbate peroxidase, a function that is particularly important in stress resistance in plants. Ascorbic acid is present at high levels in all parts of plants and can reach concentrations of 20 millimolar in chloroplasts.

Melatonin is a powerful antioxidant and, unlike conventional antioxidants such as vitamins C and E and glutathione, it is both produced in the human body and is acquired in the diet (fruits, vegetables, cereals and herbs etc., contain melatonin). Melatonin easily crosses cell membranes and the blood-brain barrier. Unlike other antioxidants, melatonin does not undergo redox cycling, which is the ability of a molecule to undergo repeated reduction and oxidation. Redox cycling may allow other antioxidants (such as vitamin C) to act as pro-oxidants and promote free radical formation. Melatonin, once oxidized, cannot be reduced to its former state because it forms several stable end-products upon reacting with free radicals. Therefore, it has been referred to as a terminal (or suicidal) antioxidant.

Vitamin E is the collective name for a set of eight related tocopherols and tocotrienols, which are fat-soluble vitamins with antioxidant properties. Of these, α-tocopherol has been most studied as it has the highest bioavailability, with the body preferentially absorbing and metabolising this form.

However, the roles and importance of the various forms of vitamin E are presently unclear, and it has even been suggested that the most important function of α-tocopherol is as a signaling molecule, with this molecule having no significant role in antioxidant metabolism. The functions of the other forms of vitamin E are even less well-understood, although γ-tocopherol is a nucleophile that may react with electrophilic mutagens, and tocotrienols may be important in protecting neurons from damage.

See also: http://en.wikipedia.org/wiki/Antioxidant

Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License and Creative Commons Attribution-ShareAlike License.)

Useful Links
Science Fair Projects Resources
Citation Guides, Style Manuals, Reference
General Safety Resources
Medicine & Health Science Fair Books


Follow Us On:

Privacy Policy - About Us

Comments and inquiries could be addressed to:

Last updated: February 2013
Copyright © 2003-2013 Julian Rubin