Constructed Wetlands
A constructed wetland or wetpark is an artificial marsh or swamp, created for anthropogenic discharge such as wastewater, stormwater runoff or sewage treatment, and as habitat for wildlife, or for land reclamation after mining or other disturbance. Natural wetlands act as biofilters, removing sediments and pollutants such as heavy metals from the water, and constructed wetlands can be designed to emulate these features.
Vegetation in a wetland provides a substrate (roots, stems, and leaves) upon which microorganisms can grow as they break down organic materials. This community of microorganisms is known as the periphyton. The periphyton and natural chemical processes are responsible for approximately 90 percent of pollutant removal and waste breakdown. The plants remove about seven to ten percent of pollutants, and act as a carbon source for the microbes when they decay. Different species of aquatic plants have different rates of heavy metal uptake, a consideration for plant selection in a constructed wetland used for water treatment.
Plantings of reedbeds are popular in European constructed wetlands, and plants such as cattails or bulrushes (Typha spp.), sedges, water hyacinth and Pontederia spp. are used worldwide. Recent research in use of constructed wetlands for subarctic regions has shown that buckbeans (Menyanthes trifoliata) and pendant grass (Arctophila fulva) are also useful for metals uptake.
Physical, chemical, and biological processes combine in wetlands to remove contaminants from wastewater. An understanding of these processes is fundamental not only to designing wetland systems but to understanding the fate of chemicals once they have entered the wetland. Theoretically, treatment of wastewater within a constructed wetland occurs as it passes through the wetland medium and the plant rhizosphere. A thin aerobic film around each root hair is aerobic due to the leakage of oxygen from the rhizomes, roots, and rootlets. Decomposition of organic matter is facilitated by aerobic and anaerobic micro-organisms present. Microbial nitrification and subsequent denitrification releases nitrogen as gas to the atmosphere. Phosphorus is coprecipitated with iron, aluminum, and calcium compounds located in the root-bed medium. Suspended solids are filtered out as they settle in the water column in surface flow wetlands or are physically filtered out by the medium within subsurface flow wetland cells. Harmful bacteria and viruses are reduced by filtration and adsorption by biofilms on the rock media in subsurface flow and vertical flow systems.
Denitrification is the biochemical reduction of oxidized nitrogen anions, nitrate (NO3-) and nitrite (NO2-) to produce the gaseous products nitric oxide (NO), nitrous oxide (N2O) and nitrogen gas (N2), with concomitant oxidation of organic matter.The general sequence is as follows:
NO3- ---> NO2- ---> NO ---> N2O ---> N2
The end products, N2O (geenhouse gas) and N2 are gases that re-enter the atmosphere. Denitrification occurs intensely in anaerobic environments but will also occur in aerobic conditions. A deficiency of oxygen causes certain bacteria to use nitrate in place of oxygen as an electron acceptor for the reduction of organic matter. The process of denitrification is restricted to a narrow zone in the sediment immediately below the aerobic-anaerobic soil interface. Denitrification is considered to be the predominant microbial process that modifies the chemical composition of nitrogen in a wetland system and the major process whereby elemental nitrogen is returned to the atmosphere. To summarize, the nitrogen cycle is completed as follows: ammonia in water, at or near neutral pH is converted to ammonium ions; the aerobic bacterium Nitrosomonas sp. oxidizes ammonium to nitrite; Nitrobacter sp. then converts nitrite to nitrate. Under anaerobic conditions, nitrate is reduced to relatively harmless nitrogen gas, that is given off to the atmosphere.
For more information (background, pictures, experiments and references): Constructed Wetland
Source: Wikipedia (All text is available under the terms of the Creative Commons Attribution-ShareAlike License)
|