Environmental Sciences Fair Project
The removal of E. coli K12 from water


Projects by Grade Level
1st 2nd 3rd 4th 5th 6th
7th 8th 9th 10th 11th 12th
Home Advanced Award Winning Warning!
Project Information
Title: The removal of E. coli K12 from water within a constructed wetland model
Subject: Environmental Sciences
Grade level: Middle School - Grades 7-9
Academic Level: Ordinary
Project Type: Experimental
Cost: Medium
Awards: None
Affiliation: Canada Wide Virtual Science Fair (VSF)
Year: 2004
Description: This project investigates the efficiency of a few constructed wetland filtration systems. Several wetland models were built with identical plants but varying filters and their efficiency was tested in removing different types of contaminants, especially E. coli K12, from water. The water will remain in the wetland system for several weeks until it is tested for contaminants and compared to the original polluted water.
Link: www.odec.ca...
Background

Escherichia coli, commonly E. coli, is a Gram negative bacterium that is commonly found in the lower intestine of warm-blooded animals. Most E. coli strains are harmless, but some, such as serotype O157:H7, can cause serious food poisoning in humans, and are occasionally responsible for costly product recalls. The harmless strains are part of the normal flora of the gut, and can benefit their hosts by producing vitamin K2, or by preventing the establishment of pathogenic bacteria within the intestine.

Transmission of pathogenic E. coli often occurs via fecal-oral transmission. Common routes of transmission include: unhygienic food preparation, farm contamination due to manure fertilization, irrigation of crops with contaminated greywater or raw sewage, feral pigs on cropland, or direct consumption of sewage-contaminated water. Dairy and beef cattle are primary reservoirs of E. coli O157:H7, and they can carry it asymptomatically and shed it in their feces. Food products associated with E. coli outbreaks include raw ground beef, raw seed sprouts or spinach, raw milk, unpasteurized juice, and foods contaminated by infected food workers via fecal-oral route.

According to the U.S. Food and Drug Administration, the fecal-oral cycle of transmission can be disrupted by cooking food properly, preventing cross-contamination, instituting barriers such as gloves for food workers, instituting health care policies so food industry employees seek treatment when they are ill, pasteurization of juice or dairy products and proper hand washing requirements.

Shiga toxin-producing E. coli (STEC), specifically serotype O157:H7, have also been transmitted by flies, as well as direct contact with farm animals, petting zoo animals, and airborne particles found in animal-rearing environments.

Bacteriological water analysis is a method of analysing water to estimate the numbers of bacteria present and, if needed, to find out what sort of bacteria they are. It is a microbiological analytical procedure which uses samples of water and from these samples determines the concentration of bacteria. It is then possible to draw inferences about the suitability of the water for use from these concentrations. This process is used, for example, to routinely confirm that water is safe for human consumption or that bathing and recreational waters are safe to use.

The interpretation and the action trigger levels for different waters vary depending on the use made of the water. Very stringent levels applying to drinking water whilst more relaxed levels apply to marine bathing waters where much lower volumes of water are expected to be ingested by users.

The common feature of all these routine screening procedures is that the primary analysis is for indicator organisms rather than the pathogens that might cause concern. Indicator organisms are bacteria such as non-specific coliforms, Escherichia coli and Pseudomonas aeruginosa that are very commonly found in the human or animal gut and which, if detected, may suggest the presence of sewage. Indicator organisms are used because even when a person is infected with a more pathogenic bacteria, they will still be excreting many millions times more indicator organisms than pathogens. It is therefore reasonable to surmise that if indicator organism levels are low, then pathogen levels will be very much lower or absent. Judgements as to suitability of water for use are based on very extensive precedents and relate to the probability of any sample population of bacteria being able to be infective at a reasonable statistical level of confidence.

Analysis is usually performed using culture, biochemical and sometimes optical methods. When indicator organisms levels exceed pre-set triggers, specific analysis for pathogens may then be undertaken and these can be quickly detected (where suspected) using specific culture methods or molecular biology.

For more information (background, pictures, experiments and references):
Water Quality K-12 Experiments & Background Information
Bacteriological Water Analysis

Source: Wikipedia (All text is available under the terms of the Creative Commons Attribution-ShareAlike License)

Useful Links
Science Fair Projects Resources
Citation Guides, Style Manuals, Reference
General Safety Resources
Electrical Safety FAQ
Environmental Sciences Fair Projects

Ecology Science Fair Projects

Environmental Sciences Experiments
Books

         



Projects Home
Primary School
Elementary School
Middle School
High School
Advanced
Easy Projects
Award Winning
Popular Ideas
Branches of Science
Experiments

Science Fair Project Guide
Home
Science Fair Project Types
The Scientific Method - How to Experiment
The Display Board
Topics, Ideas, Sample Projects

Repeat Famous Experiments and Inventions
Science Jokes Science Trivia
Scientists & Inventors

Read for Free
The Science Fair
A Juvenile Science Adventure Novel
by Julian T. Rubin

Human Abridged Wikipedia Articles



My Dog Kelly

Follow Us On:
     

Privacy Policy - Site Map - About Us - Letters to the Editor

Comments and inquiries:
webmaster@julianTrubin.com


Last updated: January 2018
Copyright 2003-2018 Julian Rubin