Julian's Science Fair
Projects by Grade Level
1st 2nd 3rd 4th 5th 6th
7th 8th 9th 10th 11th 12th
Home Primary School Elementary School Middle School High School Easy Projects Advanced Award Winning Popular Ideas

Electronics science fair project:
How an FM radio works?

Science Fair Project Information
Title: How an FM radio works?
Subject: Electronics
Grade level: Elementary School - Grades 4-6
Academic Level: Advanced
Project Type: Descriptive
Cost: Low
2nd place, Canada Wide Virtual Science Fair (2007)
Gold medal, Calgary Youth Science Fair
Affiliation: Canada Wide Virtual Science Fair (VSF)
Year: 2007
Link: http://www.virtualsciencefair.org/2007/nair7a2/
Short Background

In telecommunications, frequency modulation (FM) conveys information over a carrier wave by varying its frequency (contrast this with amplitude modulation, in which the amplitude of the carrier is varied while its frequency remains constant). In analog applications, the instantaneous frequency of the carrier is directly proportional to the instantaneous value of the input signal. Digital data can be sent by shifting the carrier's frequency among a set of discrete values, a technique known as frequency-shift keying.

Edwin Armstrong presented his paper: "A Method of Reducing Disturbances in Radio Signaling by a System of Frequency Modulation", which first described FM radio, before the New York section of the Institute of Radio Engineers on November 6, 1935. The paper was published in 1936.

As the name implies, wideband FM (W-FM) requires a wider signal bandwidth than amplitude modulation by an equivalent modulating signal, but this also makes the signal more robust against noise and interference. Frequency modulation is also more robust against simple signal amplitude fading phenomena. As a result, FM was chosen as the modulation standard for high frequency, high fidelity radio transmission: hence the term "FM radio" (although for many years the BBC called it "VHF radio", because commercial FM broadcasting uses a well-known part of the VHF band; in certain countries, expressions referencing the more familiar wavelength notion are still used in place of the more abstract modulation technique name).

FM receivers employ a special detector for FM signals and exhibit a phenomenon called capture effect, where the tuner is able to clearly receive the stronger of two stations being broadcast on the same frequency. Problematically however, frequency drift or lack of selectivity may cause one station or signal to be suddenly overtaken by another on an adjacent channel. Frequency drift typically constituted a problem on very old or inexpensive receivers, while inadequate selectivity may plague any tuner.

An FM signal can also be used to carry a stereo signal (FM stereo). However, this is done by using multiplexing and demultiplexing before and after the FM process, and is not part of FM proper. The rest of this article ignores the stereo multiplexing and demultiplexing process used in "stereo FM", and concentrates on the FM modulation and demodulation process, which is identical in stereo and mono processes.

Animated diagram representing the difference between radio waves modulated by amplitude and by frequency A graph showing a message and carrier signal for an FM transmission. A graph showing an FM modulated signal with the original message signal

Source: Wikipedia (All text is available under the terms of the GNU Free Documentation License)

For More Information: Build Your Own FM Radio

Useful Links
Science Fair Projects Resources
Citation Guides, Style Manuals, Reference
General Safety Resources
Electrical Safety FAQ
Electronics Science Fair Project Books


Follow Us On:

Privacy Policy - About Us

Comments and inquiries could be addressed to:

Last updated: June 2013
Copyright 2003-2013 Julian Rubin