Electricity Science Fair Project
Zinc air batteries for affordable, renewable energy storage

Projects by Grade Level
1st 2nd 3rd 4th 5th 6th
7th 8th 9th 10th 11th 12th
Home Advanced Award Winning Warning!
Project Information
Title: Zinc air batteries for affordable, renewable energy storage
Subject: Electriciy
Subcategory: Batteries
Grade level: High School - Grades 9-12
Academic Level: Ordinary
Project Type: Building / Engineering
Cost: Medium
Awards: Google Science Fair Finalist
Affiliation: Google Science Fair
Year: 2015
Materials: Graphene oxide, carbon nanotubes, teflon-lined autoclave, metal oxide precursor, water-isopropanol solution, air cathode, zinc plate, battery mould and electrolyte, fluorescent light
Techniques: Centrifugation, magnetic stirring, ultrasonication, calcination of catalysts
Concepts: Zinc air battery, renewable energy storage
Description: The primary objective of this project is to improve access of renewable energy to residents of developing states. Despite the rapid decline in price of photovoltaics, the overall cost is still high due to expensive storage technology. Zinc air batteries are excellent candidates for this purpose, but are limited by sluggish oxygen reactions. A self-assembled carbon aerogel made from carbon nanotubes and graphene can make rechargable zinc-air batteries more efficient. The resulting zinc-air batteries can form part of the solution to lowering the cost of renewable energy storage.
Link: www.googlesciencefair.com...

Zinc–Air Battery

Creative Commons 4.0
Animation of the operation of a zinc-air cell

Zinc–air batteries (non-rechargeable), and zinc–air fuel cells (mechanically rechargeable) are metal-air batteries powered by oxidizing zinc with oxygen from the air. These batteries have high energy densities and are relatively inexpensive to produce. Sizes range from very small button cells for hearing aids, larger batteries used in film cameras that previously used mercury batteries, to very large batteries used for electric vehicle propulsion.

During discharge, a mass of zinc particles forms a porous anode, which is saturated with an electrolyte. Oxygen from the air reacts at the cathode and forms hydroxyl ions which migrate into the zinc paste and form zincate, releasing electrons to travel to the cathode. The zincate decays into zinc oxide and water returns to the electrolyte. The water and hydroxyl from the anode are recycled at the cathode, so the water is not consumed. The reactions produce a theoretical 1.65 volts, but this is reduced to 1.35–1.4 V in available cells.

Zinc–air batteries have some properties of fuel cells as well as batteries: the zinc is the fuel, the reaction rate can be controlled by varying the air flow, and oxidized zinc/electrolyte paste can be replaced with fresh paste.

Zinc-air batteries can be used to replace now discontinued 1.35 V mercury batteries (although with a significantly shorter operating life), which in the 1970s through 1980s were commonly used in photo cameras

Possible future applications of this battery include its deployment as an electric vehicle battery and as a utility-scale energy storage system.

Zinc-air batteries have higher energy density and specific energy (and weight) ratio than other types of battery because atmospheric air is one of the battery reactants. The air is not packaged with the battery, so that a cell can use more zinc in the anode than a cell that must also contain, for example, manganese dioxide. This increases capacity for a given weight or volume. As a specific example, a zinc–air battery of 11.6 mm diameter and height 5.4 mm from one manufacturer has a capacity of 620 mAh and weight 1.9 g; various silver oxide and alkaline cells of the same size supply 150–200 mAh and weigh 2.3–2.4 g.

Zinc-air cells have long shelf life if sealed to keep air out; even miniature button cells can be stored for up to 3 years at room temperature with little capacity loss if their seal is not removed. Industrial cells stored in a dry state have an indefinite storage life.

Large zinc–air batteries, with capacities up to 2,000 ampere–hours per cell, are used to power navigation instruments and marker lights, oceanographic experiments and railway signals.

Rechargeable zinc–air cells require zinc precipitation from the water-based electrolyte to be closely controlled. Challenges include dendrite formation, non-uniform zinc dissolution and limited solubility in electrolytes. Electrically reversing the reaction at a bi-functional air cathode, to liberate oxygen from discharge reaction products, is difficult; membranes tested to date have low overall efficiency. Charging voltage is much higher than discharge voltage, producing cycle energy efficiency as low as 50%. Providing charge and discharge functions by separate uni-functional cathodes, increases cell size, weight and complexity. A satisfactory electrically recharged system potentially offers low material cost and high specific energy. As of 2014, only one company has commercial units for sale, as described in a Dept. of Energy produced video at the ARPA-e Energy Innovation Summit in 2013. Fluidic Energy has apparently covered hundreds of thousands of outages in Asia at distributed critical load sites. And at least one firm claims to be in field tests for grid-scale backup applications.

Rechargeable systems may mechanically replace the anode and electrolyte, essentially operating as a refurbishable primary cell, or may use zinc powder or other methods to replenish the reactants. Mechanically recharged systems were investigated for military electronics uses in the 1960s because of the high energy density and easy recharging. However, primary lithium batteries offered higher discharge rates and easier handling.

Metallic zinc could be used as an alternative fuel for vehicles, either in a zinc–air battery or to generate hydrogen near the point of use. Zinc's characteristics have motivated considerable interest as an energy source for electric vehicles. Gulf General Atomic demonstrated a 20 kW vehicle battery. General Motors conducted tests in the 1970s. Neither project led to a commercial product.

See also:
Zinc Air Battery

Source: Wikipedia (All text is available under the terms of the Creative Commons Attribution-ShareAlike License)

Useful Links
Science Fair Projects Resources
Citation Guides, Style Manuals, Reference
General Safety Resources
Electrical Safety FAQ
Electricity Science Fair Projects

Magnetism Science Fair Projects

Electricity Award Winning Projects

Electricity Experiments


Projects Home
Primary School
Elementary School
Middle School
High School
Easy Projects
Award Winning
Popular Ideas
Branches of Science

Science Fair Project Guide
Science Fair Project Types
The Scientific Method - How to Experiment
The Display Board
Topics, Ideas, Sample Projects

Repeat Famous Experiments and Inventions
Science Jokes Science Trivia
Scientists & Inventors

Read for Free
The Science Fair
A Juvenile Science Adventure Novel
by Julian T. Rubin

Human Abridged Wikipedia Articles

My Dog Kelly

Follow Us On:

Privacy Policy - Site Map - About Us - Letters to the Editor

Comments and inquiries:

Last updated: January 2018
Copyright © 2003-2018 Julian Rubin