Transgenic plants possess a gene or genes that have been transferred from a different species. Although DNA of another species can be integrated in a plant genome by natural processes, the term "transgenic plants" refers to plants created in a laboratory using recombinant DNA technology. The aim is to design plants with specific characteristics by artificial insertion of genes from other species or sometimes entirely different kingdoms. See also Genetics, List of genetic engineering topics.
Production of transgenic plants in wide-crosses by plant breeders has been a vital aspect of conventional plant breeding for about a century. Without it, security of our food supply against losses caused by crop pests such as rusts and mildews would be severely compromised.
The intentional creation of transgenic plants by laboratory based recombinant DNA methods is more recent (from the mid-70s on) and has been a controversial development in the field of biotechnology opposed vigorously by many NGOs, and several governments, particularly within the European Community. These transgenic recombinant plants (biotech crops, modern transgenics) are transforming agriculture in those regions that have allowed farmers to adopt them, and the area sown to these crops has continued to grow globally in every years since their first introduction in 1996
Transgenic plants have been deliberately developed for a variety of reasons: longer shelf life, disease resistance, herbicide resistance, pest resistance, non-biological stress resistances, such as to drought or nitrogen starvation, and nutritional improvement (see Golden rice). The first modern recombinant crop approved for sale in the US, in 1994, was the FlavrSavr tomato, which was intended to have a longer shelf life. The first conventional transgenic cereal created by scientific breeders was actually a hybrid between wheat and rye in 1876 (Wilson, 1876). The first transgenic cereal may have been wheat, which itself is a natural transgenic plant derived from at least three different parenteral species.
GM or transgenic canola varieties have been modified to be resistant to specific herbicides. They are called herbicide-resistant varieties. The plants are modified, but the oil is not modified. It is identical to canola oil from non-modified or conventional canola. Herbicide-resistant GM canola is grown on about 80% of the acres in western Canada. GM canola was first introduced in 1995.
Outcrossing of transgenic plants not only poses potential environmental risks, it may also trouble farmers and food producers. Many countries have different legislations for transgenic and conventional plants as well as the derived food and feed, and consumers demand the freedom of choice to buy GM-derived or conventional products. Therefore, farmers and producers must separate both production chains. This requires coexistence measures on the field level as well as traceability measures throughout the whole food and feed processing chain. Research projects such as Co-Extra, SIGMEA and Transcontainer investigate how farmers can avoid outcrossing and mixing of transgenic and non-transgenic crops, and how processors can ensure and verify the separation of both production chains.
For More Information: Genetically Modified Food (GMF): K-12 Experiments & Background Information
Source: Wikipedia (All text is available under the terms of the Creative Commons Attribution-ShareAlike License)
|